原子吸收光譜儀分為單光束型和雙光束型。其結構可分為五個部分:光源、原子化器、光學系統、檢測系統與數據處理系統??蓱糜谝苯?、地質、采礦、石油、輕工業、農業、醫藥、衛生、食品以及環境監測等.
20世紀60年代,火焰原子吸收光譜法已應用到各種巖石樣品中的鈣、鎂、鉀、鈉.鐵.銅、錳、鋅、鈷、鎳以及金銀等元素的測定。由于該方法的高效性和抗干擾性,即使對痕量元素的分析,也無需進行主要成分的分離,因此,很快為地球化學實驗室所接受,尤其是在處理好一份試樣的溶液中可連續測定多個元素甚至十多個元素。在引入氧化亞氮--乙炔火焰、石墨爐和氫化物技術后,不僅擴大了測定元素數量,而且對于痕量元素的測定也做出了顯著的貢獻。此外用原子吸收光譜法可以測定巖石礦物中很大部分的元素,而且都有足夠的靈敏度和很好的精密度。
原子吸收光譜分析本質上是一種微量元素或痕量元素的測定技術,無論是火焰原子吸收還是石墨爐原子吸收分析,對于含量或濃度高的樣品都必須進行稀釋。原子吸收光譜最適宜的測量范圍,固體樣品在千分之幾至十萬分之幾之間。對于試樣的形式通常溶液進樣分析技術。所以樣品的前處理相當重要。涉及到萃取、消解等前處理技術。而非溶液進樣則應用于石墨爐原子吸收光譜分析。
原子吸收光譜分析法的優點是:
(1)檢出限低,靈敏度高?;鹧嬖游辗ǖ臋z出限可達10-9g(ppm級),石墨爐原子吸收法更高,可達ppb級。
(2)測量精度好。火焰原子吸收法測定中等和高含量元素的相對偏差可小于1%,測量精度已接近于經典化學方法。石墨爐原子吸收法的測量精度一般為3-5%。
(3)選擇性強,簡便、快速。由于其采用銳線光源,樣品不需要經繁瑣的分離,可在同一溶液中直接測定多種元素,測定一個元素只需要數分鐘,分析操作簡便、迅速。
(4)抗干擾能力強。原子吸收線數目少,光譜干擾少,一般不存在共存元素的光譜重疊干擾。
(5)應用范圍廣??蓽y60多種元素;既能用于微量分析又能用于超微量分析。另外,還可用間接的方法測定非金屬元素和有機化合物。
(6)用樣量少?;鹧嬖游展庾V測定的進樣量為3~6mL·min-1,采用微量進樣時可少至10~50μL。石墨爐原子吸收光譜測定的液體進樣為10~20μL,固體進樣量為毫克量級,需要的樣品量極少。
(7)儀器設備相對比較簡單,操作簡便,易于掌握。
原子吸收光譜儀檢測系統包括檢測器、放大器、對數轉換器及顯示裝置等。光電倍增管是原子吸收光譜儀的主要檢測器,要求在180-900nm測定波長內具有較高的靈敏度,并且暗電流小。目前通過計算機軟件控制的原子吸收光譜儀具有很強的數據處理能力。